Abstract

Conventional weirs are utilized for controlling, measuring and adjusting the flow depth in hydraulic structures, such as those found in irrigation and drainage networks. Various weirs with modified shapes are utilized to increase the discharge capacity. The main goal of this study is to investigate the discharge coefficient (Cd) of triangular labyrinth weirs using soft computing methods. The performance of the Radial Basis Neural Network (RBNN) is compared with that of Multiple Nonlinear and Multiple Linear Particle Swarm Optimization (MNLPSO and MLPSO). Models developments are conducted using published experimental data from the literature. Comparing the RBNN, MLPSO and MNLPSO results obtained through these soft computing techniques with experimental data shows that all models perform well in predicting the discharge coefficient of a triangular labyrinth weir. Performance of the proposed approaches which demonstrated explicit equation given by MNLPSO model provided the discharge capacity with lower error (RMSE=0.0223) is compared with the MLPSO (RMSE=0.0346) and RBNN (RMSE=0.045) approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.