Abstract
This paper investigates and compares the performance of local descriptors for race classification from face images. Two powerful types of local descriptors have been considered in this study: Local Binary Patterns (LBP) and Weber Local Descriptors (WLD). First, we investigate the performance of LBP and WLD separately and experiment with different parameter values to optimize race classification. Second, we apply the Kruskal-Wallis feature selection algorithm to select a subset of more "discriminative" bins from the LBP and WLD histograms. Finally, we fuse LBP and WLD, both at the feature and score levels, to further improve race classification accuracy. For classification, we have considered the minimum distance classifier and experimented with three distance measures: City-block, Euclidean, and Chi-square. We have performed extensive experiments and comparisons using five race groups from the FERET database. Our experimental results indicate that (i) using the Kruskal-Wallis feature selection, (ii) fusing LBP with WLD at the feature level, and (iii) using the City-block distance for classification, outperforms LBP and WLD alone as well as methods based on holistic features such as Principal Component Analysis (PCA) and LBP or WLD (i.e., applied globally).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.