Abstract

The pathology of acute respiratory distress syndrome (ARDS) is closely associated with the failure of alveolar‑capillary barrier integrity and alveolar filling by high protein pulmonary edema, resulting from hyperpermeability. High mobility group box 1 (HMGB1) is a novel late mediator of sepsis, which is specifically involved in endotoxin‑induced acute lung injury and sepsis‑associated lethality. Although the role of HMGB1 in endothelial cell cytoskeletal rearrangement and vascular permeability have been investigated preliminarily, the molecular mechanisms remain to be fully elucidated. As the ras‑related C3 botulinum toxin substrate 1 (Rac1) gene is important role in regulating microvascular barrier maintenance, the present study was designed to determine whether Rac1 is involved in HMGB1‑induced hyperpermeability in pulmonary microvascular endothelial cells (PMVECs). The results of the present study demonstrated that HMGB1 induced dose and time‑dependent decreases in transendothelial electrical resistance (TER). Notably, HMGB1 induced a dose‑dependent increase in the activity and expression levels of Rac1. Using small interfering RNA and an agonist of Rac1, the present study demonstrated that Rac1 was a novel factor mediating the HMGB1‑induced decrease in TER via extracellular signal‑regulated kinase and p38 mitogen‑activated protein kinase (MAPK) activation. These data suggested that Rac1 is involved in HMGB1‑induced hyperpermeability in PMVECs via MAPK signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.