Abstract

Rab11, a member of Rab-GTPase family, and a marker of recycling endosomes has been reported to be involved in the differentiation of various tissues in Drosophila. Here we report a novel role of Rab11 in the differentiation of stellate cells via the non-canonical Notch pathway in Malpighian tubules. During Malpighian tubule development caudal visceral mesodermal cells intercalate into the epithelial tubule of ectodermal origin consisting of principal cells, undergo mesenchymal to epithelial transition and differentiate into star shaped stellate cells in adult Malpighian tubule. Two transcription factors, Teashirt and Cut (antagonistic to each other) are known to be expressed in stellate cells and principal cells, respectively, from early stages of development and serve as markers for these cells. Inhibition of Rab11 function or over-expression of activated Notch in stellate cells resulted in the expression of Cut that leads to down-regulation of Teashirt or vice-versa that leads to hampered differentiation of stellate cells. The stellate cells do not transform to star/bar shaped and remain in mesenchymal state in adult Malpighian tubule. Over-expression of Deltex, which plays important role in non-canonical Notch signaling pathway, shows similar phenotype of stellate cells as seen in individuals with down-regulated Rab11, while down-regulation of Deltex in genetic background of Rab11RNAi rescues Teashirt expression and shape of stellate cells. Our experiments suggest that an inhibition or reduction of Rab11 function in stellate cells results in the faulty recycling of Notch receptors to plasma membrane as they accumulate in early and late endosomes, leading to Deltex mediated non-canonical Notch activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.