Abstract

The autocorrelation of long memory processes decays much slower than that of short memory processes, e.g. autoregressive processes. Fractional integration and Gegenbauer are basic models that show long memory behavior. Many tests for long memory of the fractional integration type (at f = 0) have been developed based on test statistics (e.g. the R/S-type statistics) or parameter estimators (e.g. the GPH estimator). But, so far, no work has shown reasonable power on testing for cyclic long memory. The authors investigate a parametric bootstrap procedure with an R-squared statistic as an assessment of cyclic long memory behavior. According to simulation results, the R-squared-bootstrapping method performs excellently in detecting Gegenbauer-type processes (e.g. with long memory behavior associated with frequencies $$f\in (0,0.5]$$ ) while at the same time controlling observed significance levels. The R-squared-bootstrapping test is also applied to the Lynx data and the result suggests the presence of long range dependence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.