Abstract

The increasing availability of complex data in biology and medicine has promoted the use of machine learning in classification tasks to address important problems in translational and fundamental science. Two important obstacles, however, may limit the unraveling of the full potential of machine learning in these fields: the lack of generalization of the resulting models and the limited number of labeled data sets in some applications. To address these important problems, we developed an unsupervised ensemble algorithm called strategy for unsupervised multiple method aggregation (SUMMA). By virtue of being an ensemble method, SUMMA is more robust to generalization than the predictions it combines. By virtue of being unsupervised, SUMMA does not require labeled data. SUMMA receives as input predictions from a diversity of models and estimates their classification performance even when labeled data are unavailable. It then uses these performance estimates to combine these different predictions into an ensemble model. SUMMA can be applied to a variety of binary classification problems in bioinformatics including but not limited to gene network inference, cancer diagnostics, drug response prediction, somatic mutation, and differential expression calling. In this application note, we introduce the R/PY-SUMMA packages, available in R or Python, that implement the SUMMA algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.