Abstract
The moduli space of multiply-connected Calabi-Yau threefolds is shown to contain codimension-one loci on which the corresponding variety develops a certain type of hyperquotient singularity. These have local descriptions as discrete quotients of the conifold, and are referred to here as hyperconifolds. In many (or possibly all) cases such a singularity can be resolved to yield a distinct compact Calabi-Yau manifold. These considerations therefore provide a method for embedding an interesting class of singularities in compact Calabi-Yau varieties, and for constructing new Calabi-Yau manifolds. It is unclear whether the transitions described can be realised in string theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.