Abstract

We prove that if X is a locally compact σ-compact space, then on its quotient, γ(X) say, determined by the algebra of all real valued bounded continuous functions on X, the quotient topology and the completely regular topology defined by this algebra are equal. It follows from this that if X is second countable locally compact, then γ(X) is second countable locally compact Hausdorff if and only if it is first countable. The interest in these results originated in [1] and [7] where the primitive ideal space of a C*-algebra was considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.