Abstract

We report on a quinoid heteropentacene as p-type semiconductor in organic field-effect transistors. Both single crystal and thin-film transistors were fabricated with 7,14-diphenyl-chromeno[2,3-b]xanthene (DPCX). In this small molecule organic semiconductor the field-effect mobility is as high as 0.16 cm2/Vs in single-crystal devices and 0.01 cm2/Vs in thin-film devices. In addition, the devices show favorable properties such as near zero onset/threshold voltages and a small current hysteresis. X-ray diffraction experiments show the molecules to be arranged in slipped stacks and to have a flat backbone in the crystals. For thin films of DPCX the situation is complicated by the coexistence of a thin-film phase with the bulk phase. However, a comparison of DPCX thin films on octadecyltrichlorosilane (OTS)-treated and bare SiO2 gate dielectrics provides clear evidence that the OTS surface treatment leads to organic thin films with a better structural order. The low-cost synthesis and purification of DPCX along with the improved processability and the good electrical characteristics suggest that quinoid heteropentacenes are promising materials for organic field-effect transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.