Abstract
We define a sequence of tree-indexed processes closely related to the operation of the QuickSelect search algorithm (also known as Find) for all the various values of n (the number of input keys) and m (the rank of the desired order statistic among the keys). As a ‘master theorem’ we establish convergence of these processes in a certain Banach space, from which known distributional convergence results as n → ∞ about (1)the number of key comparisons requiredare easily recovered (a)when m/n → α ∈ [0, 1], and(b)in the worst case over the choice of m. From the master theorem it is also easy, for distributional convergence of(2)the number of symbol comparisons required, both to recover the known result in the case (a) of fixed quantile α and to establish our main new result in the case (b) of worst-case Find.Our techniques allow us to unify the treatment of cases (1) and (2) and indeed to consider many other cost functions as well. Further, all our results provide a stronger mode of convergence (namely, convergence in Lp or almost surely) than convergence in distribution. Extensions to MultipleQuickSelect are discussed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.