Abstract

The authors explore a new concept of spectral characterization of wide-band input process in high speed networks. It helps them to localize wide-band sources in a subspace, especially in the low-frequency band, which has a dominant impact on queueing performance. They choose simple periodic-chains for the input rate process construction. Analogous to input functions in signal processing, they use elements of DC, sinusoidal, rectangular pulse, triangle pulse, and their superpositions, to represent various input correlation properties. The corresponding input power spectrum is defined in the discrete-frequency domain. In principle, a continuous spectral function of stationary random input process can be asymptotically approached by its discrete version as one sufficiently reduces the discrete-frequency intervals. An understanding of the queue response to the input spectrum will provide a great deal of knowledge to develop advanced network traffic measurement theory, and help to introduce effective network resource allocation policies. The new relation between queue length and input spectrum is a fruitful starting point for further research.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.