Abstract

Queue-aware transmission scheduling for cooperative wireless communications with sub-fading-block scheduling to better balance load and capacity in low mobility environments is investigated. The scheduling problem for joint cooperation scheduling and resource allocation is formulated as a constrained nonlinear integer optimization problem over an integer convex set based on a source buffer queueing analysis. It is shown that with queue-aware scheduling, the state transition matrix of the source buffer queue has a highly dynamic form. As a result, the objective function of the optimization problem does not have an analytic form in general. The constrained discrete Rosenbrock search algorithm, which is a gradient-free directed discrete search algorithm, is employed to solve the nonlinear integer problem. The output of the directed integer search algorithm is used for queue-aware transmission scheduling for the cooperative system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.