Abstract

Extractive style query-oriented multi-document summarization generates the summary by extracting a proper set of sentences from multiple documents based on the pre-given query. This paper proposes a novel multi-document summarization framework via deep learning model. This uniform framework consists of three parts: concepts extraction, summary generation, and reconstruction validation, which work together to achieve the largest coverage of the documents content. A new query-oriented extraction technique is proposed to concentrate distributed information to hidden units layer by layer. Then, the whole deep architecture is fine-tuned by minimizing the information loss of reconstruction validation. According to the concentrated information, dynamic programming is used to seek most informative set of sentences as the summary. Experiments on three benchmark datasets demonstrate the effectiveness of the proposed framework and algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.