Abstract
Synchronous exocytosis in Paramecium cells was analyzed on a subsecond time scale. For this purpose we developed a quenched flow device for rapid mixing and rapid freezing of cells without impairment (time resolution in the millisecond range, dead time approximately 30 ms). Cells frozen at defined times after stimulation with the noncytotoxic secretagogue aminoethyldextran were processed by freeze substitution for electron microscopic analysis. With ultrathin sections the time required for complete extrusion of secretory contents was determined to be less than 80 ms. Using freeze-fracture replicas the time required for resealing of the fused membranes was found to be less than 350 ms. During membrane fusion (visible 30 ms after stimulation) specific intramembranous particles in the cell membrane at the attachment sites of secretory organelles ("fusion rosette") disappear, possibly by dissociation of formerly oligomeric proteins. This hitherto unknown type of rapid change in membrane architecture may reflect molecular changes in protein-protein or protein-lipid interactions, presumably crucial for membrane fusion. By a modification of the quenched flow procedure extracellular [Ca++] during stimulation was adjusted to less than or equal to 3 x 10(-8) M, i.e., below intracellular [Ca++]. Only extrusion of the secretory contents, but not membrane fusion, was inhibited. Thus it was possible to separate both secretory events (membrane fusion from contents extrusion) and to discriminate their Ca++ requirements. We conclude that no Ca++ influx is necessary for induction of membrane fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.