Abstract

Abstract Lithium–sulfur (Li–S) batteries are great candidates for energy storage systems, but need to overcome the issues of low sulfur utilization and polysulfide shuttling for use in large-scale commercial applications. Recently, quaternized polymers have received much attention for their polysulfide trapping properties due to electrostatic interaction. In this work, we report a series of polyarylether sulfone (PSF) binders with different cation structures including imidazolium (Im), triethylammonium (Tr), and morpholinium (Mo). The ability of the these quaternized binders and the conventional poly(vinylidene fluoride) or PVDF binder to capture polysulfide increases in the order of PVDF

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.