Abstract

Ground penetrating radar (GPR) was used in a programme of geological and hydrogeological investigations into the Quaternary of west Cumbria, UK. The investigations were part of an extensive programme to determine the suitability of the area for a deep radioactive waste repository. The hydrogeological characteristics of the drift deposits are important since they affect both recharge and discharge. The glacially derived Quaternary sediments include a variety of deformation structures related to their mode of deposition and subsequent modification by glacial and periglacial processes. These deformation structures range from variable scale thrusts (centimeter to tens of meter displacement due to proglacial thrusting) to small to medium scale faults, folds and collapse structures which are early or syn-sedimentary adjustments. From the GPR data a number of dipping reflectors, having dip angles in the range of 8–23°, were interpreted as thrust planes and related faults and folds have been clearly observed. Inwardly dipping reflectors, having a maximum dip angle of 36°, creating a characteristic `V' shaped anomaly, were also observed and interpreted to be linear collapse structures where glacitectonically emplaced slices of ice melted out causing sediments to slump. Lateral continuations, up to 90 m, of GPR-interpreted dislocations were mapped between survey lines, suggesting that such features could be laterally continuous on the scale of hundreds of metres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.