Abstract

Wheel slips are unavoidable when moving on a 3D rough surface. They are mainly due to geometrical features of contact surfaces. In this paper, we propose a model for predicting rover motion and contact slips by using a kineto-static model coupled with a linear contact model derived from semiempirical tire/terramechanics approaches. The paper also introduces a coherent approach for motion simulation of uneven articulated rovers which is computationally efficient and can then be used for autonomous on-line path planning. Model results are compared to another numerical model based on a multibody dynamic model including frictional contacts. The well-known rocker-bogie chassis, a highly articulated structure, is chosen to illustrate results and their comparison. Results demonstrate that for a slow motion, the proposed model approximates with a good accuracy the general behavior of the robot with a minimal time computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.