Abstract
High harmonic generation (HHG) is an important process in attosecond science. Its efficiency is, however, limited to values below 10−5 of the incident power into a single harmonic. Phase matching can increase the efficiency but deals with low ionization rates. Furthermore HHG from laser-produced plasmas has shown some promising advantages in increasing the response of the conversion. These are the appearance of resonantly enhanced harmonics or the efficient generation in carbon or nanoparticle containing plasmas. On the contrary laser-produced plasmas inherently possess a high degree of ionization which hampers any phase-matching scheme with these sources. This dilemma can be circumvented by quasi-phase matching (QPM). In this case the conversion process is suppressed when the harmonics are generated out of phase leading to a quadratic growth of the harmonic intensity with interaction distance. Experimentally QPM can be achieved e.g. by applying a structured conversion medium in a focused driving beam geometry. Here, we show how such a scheme is realized with laser-produced plasmas. The idea of using a structured plasma for QPM is not new [1], but in none of these earlier studies QPM has been optimized for maximum efficiency nor controlled for different regions of the harmonic spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.