Abstract

AbstractWe demonstrate the potential of recently developed electronic‐structure methods for the calculation of the optical properties of solids. As prototypical examples semiconductors crystallizing in diamond or zinc‐blende structure are studied. The many‐body effects are fully taken into account by a solution of the combined Dyson and Bethe‐Salpeter equations. We show that an initial‐value formulation of the polarization function allows for an efficient numerical calculation of the optical susceptibility. The effect of the renormalization of electrons and holes to quasiparticles is shown for both the band structure and the optical spectrum. In addition, excitonic effects are identified to remarkably influence the optical absorption. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.