Abstract
Distorted black holes radiate gravitational waves. In the so-called ringdown phase radiation is emitted in a discrete set of complex quasinormal frequencies, whose values depend only on the black hole's mass and angular momentum. Ringdown radiation could be detectable with large signal-to-noise ratio by the Laser Interferometer Space Antenna LISA. If more than one mode is detected, tests of the black hole nature of the source become possible. The detectability of different modes depends on their relative excitation, which in turn depends on the cause of the perturbation (i.e. on the initial data). A ``universal'', initial data-independent measure of the relative mode excitation is encoded in the poles of the Green's function that propagates small perturbations of the geometry (``excitation factors''). We compute for the first time the excitation factors for general-spin perturbations of Kerr black holes. We find that for corotating modes with $l=m$ the excitation factors tend to zero in the extremal limit, and that the contribution of the overtones should be more significant when the black hole is fast rotating. We also present the first analytical calculation of the large-damping asymptotics of the excitation factors for static black holes, including the Schwarzschild and Reissner-Nordstrom metrics. This is an important step to determine the convergence properties of the quasinormal mode expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.