Abstract

A high-quality electron beam can be extracted from a channel guided laser wakefield accelerator without confining the injected particles to a small region of phase. By careful choice of the injection energy, a regime can be found where uniformly phased particles are quickly bunched by the accelerator itself and subsequently accelerated to high energy. The process is particularly effective in a plasma channel because of a favorable phase shift that occurs in the focusing fields. Furthermore, particle-in-cell simulations show that the self-fields of the injected bunches actually tend to reduce the energy spread on the final beam. The final beam characteristics can be calculated using a computationally inexpensive Hamiltonian formulation when beam-loading effects are minimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.