Abstract

We consider systems of quasilinear partial differential equations of second order in two- and three-dimensional domains with corners and edges. The analysis is performed in weighted Sobolev spaces with attached asymptotics generated by the asymptotic behaviour of the solutions of the corresponding linearized problems near boundary singularities. Applying the Local Invertibility Theorem in these spaces we find conditions which guarantee existence of small solutions of the nonlinear problem having the same asymptotic behaviour as the solutions of the linearized problem. The main tools are multiplication theorems and properties of composition (Nemytskij) operators in weighted Sobolev spaces. As application of the general results a steady-state drift-diffusion system is explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.