Abstract

Abstract The microstructural characteristics of quasicrystalline and related crystalline phases in rapidly solidified Al[sbnd]5 to 20 at% Fe alloys have been investigated by detailed transmission electron microscopy. Rapid solidification of Al[sbnd]5 to 20 at% Fe alloys produces a variety of metastable phases, depending upon alloy composition and cooling rate: microquasicrystalline, decagonal, AlmFe, Al6Fe and Al13 Fe4, in order of increasing thermodynamic stability. The Al-Fe microquasicrystalline phase consists of clusters of nm scale randomly oriented icosahedral particles, distributed in the form of either primary solidification particles or a fine scale two phase cellular structure. The microquasicrystalline phase has a solute content (≈Al6Fe) which is lower than the Al-Mn icosahedral phase (≈ Al4Mn). The Al[sbnd]Fe decagonal phase has a periodicity of 1·65 nm along the tenfold symmetry axis, forms as a primary solidification product, and has a solute content (≈Al9Fe2) which is similar to the Al[sbnd]Mn decagonal phase (≈Al4Mn). Detailed selected area electron diffraction analysis shows a close similarity between the decagonal, AlmFe and Al13Fe4 phases, suggesting that the AlmFe and Al13Fe4 phases may be approximants of the Al[sbnd]Fe decagonal phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.