Abstract
The N((2)D) + H2O is a reaction with competitive product channels, passing through several intermediates. Dynamics of this reaction had been investigated by two of the present authors at two collision energies, Ec, using the crossed molecular beams mass spectrometric method ( Faraday Discuss. 2001 , 119 , 27 - 49 ). The complicated mechanism of this reaction and puzzling results encouraged us to investigate the reaction in a joint experimental/theoretical study. Quasiclassical trajectory (QCT) calculations on an ab initio potential energy surface describing all channels of the title reaction are done with a focus on the N/H exchange channels. Interesting results of QCT calculations, in very good agreement with experimental data, reveal subtle details of the reaction dynamics of the title reaction to HNO/HON + H exit channels by disentangling the different routes to formation of the two possible HNO/HON isomers and therefore assisting in a critical manner the derivation of the reaction mechanism. Results of the present study show that the nonstatistical HNOH intermediate governs exit channels; therefore, the HON channel is as important as that of HNO. The study also confirms that the H2 + NO molecular channel is negligible even though the barrier to its formation is calculated to be well below the reactant asymptote.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.