Abstract

The traveling salesman problem (TSP) is a well studied NP-hard optimization problem. We present a novel heuristic to find approximate solutions for the case of the TSP with Euclidean metric. Our pair-center algorithm runs in quasi-linear time and on linear space. In practical experiments on a variety of well known benchmarks the algorithm shows linearithmic (i.e., O(nlogn)) runtime. The solutions found by the pair-center algorithm are very good on smaller problem instances, and better than those generated by any other heuristic with at most quadratic runtime. Eventually, the average gap of the pair-center algorithm on all benchmark instances with less than 1001 points is 0.94% and for all instances with more than 1000 points up to 100 million points is 4.57%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.