Abstract

\abstract{We prove a quasi-independence result for level sets of a planar centered stationary Gaussian field with covariance $(x,y)\mapsto\kappa(x-y)$. As a first application, we study percolation for nodal lines in the spirit of~\cite{bg_16}. In the said article, Beffara and Gayet rely on Tassion's method (\cite{tassion2014crossing}) to prove that, under some assumptions on $\kappa$, most notably that $\kappa \geq 0$ and $\kappa(x)=O(|x|^{-325})$, the nodal set satisfies a box-crossing property. The decay exponent was then lowered to $16+\varepsilon$ by Beliaev and Muirhead in \cite{bm_17}. In the present work we lower this exponent to $4+\varepsilon$ thanks to a new approach towards quasi-independence for crossing events. This approach does not rely on quantitative discretization. Our quasi-independence result also applies to events counting nodal components and we obtain a lower concentration result for the density of nodal components around the Nazarov and Sodin constant from~\cite{nazarov2015asymptotic}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.