Abstract

The structure of an H(2)O monolayer bound to atomically smooth hydroxylated amorphous silica is probed under ambient conditions by near-infrared evanescent-wave cavity ring-down absorption spectroscopy. Employing a miniature monolithic optical resonator, we find sharp (approximately 10 cm(-1)) and polarized (>10:1) vibration-combination bands for surface OH and adsorbed H(2)O, which reveal ordered species in distinct local environments. Indicating first-monolayer uniqueness, the absorption bands for adsorbed H(2)O show intensity saturation and line narrowing with completion of one monolayer. Formation of the ordered H(2)O monolayer likely arises from H bonding to a quasicrystalline surface OH network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.