Abstract

Quasi-biennial cycles are often reported in climate studies. The interannual El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) are two phenomena containing quasi-periodicities of approximately 2.5 and 2.2 years. It is known that ENSO affects corn yield through weather patterns, NAO affects surface temperature and cloudiness, and surface temperature, rainfall, and radiation affect corn yield. However, a quasi-biennial pattern in corn yield and the combined effect of several climate signals on long-term U.S. corn yield are not known. Here we show statistically significant 2–3 year periods in long-term corn yield from one of the world's most important corn producing regions. High (low) yields are due in part to high (low) surface radiation and low (high) temperature early in the corn growing season coupled with sufficient (insufficient) rainfall later in the growing season. A statistical model we developed using three climate indices accounts for 54% of the interannual variation in Iowa corn yield. The most significant periodicities found in the model's spectrum are similar to the quasi-biennial periodicities in observed corn yield. We classify Iowa corn yield from several regional datasets (1960–2006) for ‘low yield’ and ‘high yield’ conditions as predicted by the model. The difference between observed corn yields for ‘high’ and ‘low’ yielding years was 19% ( p = 0.0001). The results demonstrate a quasi-biennial pattern in long-term Iowa corn yield related to large-scale climate variability. This knowledge could lead to models that help guide springtime agricultural management decisions that improve profitability and reduce nitrate flux to groundwater, streams, rivers, and coastal oceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.