Abstract
A novel quartz crystal resonator (QCR) sensor with a printed-on-crystal conductive coil, named sensor coil, is presented. The sensor coil electromagnetically coupled to an external readout coil allow to perform contactless interrogation of the QCR working as a stand-alone sensor unit. A frequency-domain readout technique is adopted that allows dual-harmonic operation by detecting the QCR frequencies of the fundamental and third harmonic, and offers first-order independence from the stand-off distance between the sensor and the readout unit. The QCR electrodes and sensor coil have been printed on a 330- [Formula: see text]-thick bare AT-cut quartz crystal exploiting the aerosol jet printing technology. The fabricated QCR sensor has reference values of the fundamental and third harmonic frequencies at 4.77 and 14.22 MHz, respectively. Distance-independent contactless operation has been demonstrated for distances up to 12 mm. The readout frequencies deviate from reference values less than 10 and 90 ppm for the fundamental and third harmonic, respectively, thus validating the proposed principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.