Abstract
A prolate γ-rigid version of the Bohr-Mottelson Hamiltonian with a quartic anharmonic oscillator potential in β collective shape variable is used to describe the spectra for a variety of vibrational-like nuclei. Speculating the exact separation between the two Euler angles and the β variable, one arrives at a differential Schrödinger equation with a quartic anharmonic oscillator potential and a centrifugal-like barrier. The corresponding eigenvalue is approximated by an analytical formula depending only on a single parameter up to an overall scaling factor. The applicability of the model is discussed in connection to the existence interval of the free parameter, which is limited by the accuracy of the approximation, and by comparison with the predictions of the related X(3) and X(3)-β 2 models. The model is applied to qualitatively describe the spectra for nine nuclei which exhibit near-vibrational features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.