Abstract

Forecasting of time series that have seasonal and other variations remains an important problem for forecasters. This paper presents a neural network (NN) approach to forecasting quarterly time series. With a large data set of 756 quarterly time series from the M3 forecasting competition, we conduct a comprehensive investigation of the effectiveness of several data preprocessing and modeling approaches. We consider two data preprocessing methods and 48 NN models with different possible combinations of lagged observations, seasonal dummy variables, trigonometric variables, and time index as inputs to the NN. Both parametric and nonparametric statistical analyses are performed to identify the best models under different circumstances and categorize similar models. Results indicate that simpler models, in general, outperform more complex models. In addition, data preprocessing especially with deseasonalization and detrending is very helpful in improving NN performance. Practical guidelines are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.