Abstract

We propose a new design of semiconductor quantum-well heterostructures, which can be used to improve the performance of monolithic mode-locked diode lasers and all-optical signal-processing devices with gain and saturable absorber sections. Numerical modeling shows that this design can increase the carrier sweep-out rate from the absorber section by several orders of magnitude, while retaining high carrier confinement on the ground level making for efficient signal amplification by the gain sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.