Abstract
Starting from quantum Langevin equations for operators we study thermal properties of a one-dimensional harmonic chain to whose ends independent heat baths are attached. In this paper, we mainly discuss the thermal equilibrium state that the chain eventually approaches if the heat baths are at equal temperatures. In the classical limit, this state is determined by the Gibbs ensemble of the free chain, whereas in the quantal case, this is only true if the strength of coupling between chain and heat baths is made infinitely small. We find that corrections for finite coupling strength are appreciable only in boundary layers near both ends of the chain. The thickness of the boundary layers depends only on the temperature and not on the damping constant. Outside these boundary layers we find an analogy between thermal properties of the chain and a discrete random walk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.