Abstract

We study the quantum Zeno effect and the anti-Zeno effect in the case of `indirect' measurements, where a measuring apparatus does not act directly on an unstable system, for a realistic model with finite errors in the measurement. A general and simple formula for the decay rate of the unstable system under measurement is derived. In the case of a Lorentzian form factor, we calculate the full time evolutions of the decay rate, the response of the measuring apparatus, and the probability of errors in the measurement. It is shown that not only the response time but also the detection efficiency plays a crucial role. We present the prescription for observing the quantum Zeno and anti-Zeno effects, as well as the prescriptions for avoiding or calibrating these effects in general experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.