Abstract

We investigate the lateral tunneling properties of electrons through a one-dimensional double-quantum-well system using the recursive Green's-function technique. The conductance exhibits a number of interesting quantum-interference effects, including a strong resonance at the onset of conductance, a ``beating'' effect due to competing characteristic times for the system, and a finite conductance at large Fermi energies, where the densities of states for the individual wells is small. It is shown that the last property may be exploited to use this system as a quantum-interference transistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.