Abstract

Understanding quantum systems is of significant importance for assessing the performance of quantum hardware and software, as well as exploring quantum control and quantum sensing. An efficient representation of quantum states enables realizing quantum state tomography with minimal measurements. In this study, we propose an alternative approach to state tomography that uses tensor network representations of mixed states through locally purified density operators and employs a classical data postprocessing algorithm requiring only local measurements. Through numerical simulations of one-dimensional pure and mixed states and two-dimensional pure states up to size 8 × 8, we demonstrate the efficiency, accuracy, and robustness of our proposed methods. Experiments on the IBM and Quafu Quantum platforms complement these numerical simulations. Our study opens avenues in quantum state tomography for two-dimensional systems using tensor network formalism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.