Abstract
We demonstrate theoretically that the interaction of quantum rings with a high-frequency off-resonant electromagnetic field (dressing field) substantially renormalizes their electronic properties. Particularly, it is shown that a linearly polarized dressing field decreases the spin splitting arisen from the Rashba spin-orbit interaction, whereas a circularly polarized field splits electron states corresponding to mutually opposite directions of angular momentum. As a consequence, the dressing field can serve as an effective tool to control spin and transport characteristics of the quantum rings and be potentially exploited in optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.