Abstract

We investigate theoretically and numerically quantum reflection of dark solitons propagating through an external reflectionless potential barrier or in the presence of a position-dependent dispersion. We confirm that quantum reflection occurs in both cases with a sharp transition between complete reflection and complete transmission at a critical initial soliton speed. The critical speed is calculated numerically and analytically in terms of the soliton and potential parameters. Analytical expressions for the critical speed were derived using the exact trapped mode, time-independent, and time-dependent variational calculations. It is then shown that resonant scattering occurs at a critical speed, where the energy of the incoming soliton is resonant with that of a trapped mode. Reasonable agreement between analytical and numerical values for the critical speed is obtained as long as a periodic multisoliton ejection regime is avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.