Abstract

A Luttinger liquid (LL) describes low energy excitations of many interacting one dimensional systems, and exhibits universal response both in and out of equilibrium. We analyze its behavior in the non-Hermitian realm after quantum quenching to a PT-symmetric LL by focusing on the fermionic single particle density matrix. For short times, we demonstrate the emergence of unique phenomena, characteristic to non-Hermitian systems, that correlations propagate faster than the conventional maximal speed, known as the Lieb-Robinson bound. These emergent supersonic modes travel with velocities that are multiples of the conventional light cone velocity. This behavior is argued to be generic for correlators in non-Hermitian systems. In the long time limit, we find typical LL behavior, extending the LL universality to the nonequilibrium, non-Hermitian case. Our analytical results are benchmarked numerically and indicate that the dispersal of quantum information is much faster in non-Hermitian systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.