Abstract

According to the Heisenberg uncertainty principle, the precision of any physical quantity measurement is limited by quantum fluctuation in general, which leads to the so-called standard quantum limit (SQL). The SQL can be beaten by using squeezed light, hence enhancing the measurement accuracy. Squeezed light is a typical nonclassical light, it exhibits reduced noise in one quadrature component. Since Caves proposed the scheme of phase measurement enhancement with squeezing, squeezed light has been used to enhance measurement precision in many areas. This review focuses on the following four kinds of precision measurements based on squeezed light: the measurements of relative phase, small lateral displacement and tilt, magnetic field, and clock synchronization. For all of these measurements, vacuum squeezing has been used to enhance measurement precision, while the types of squeezing (squeezing angle, transverse mode, polarization etc.) are different. For phase measurement, quadrature squeezing is injected into the conventionally unused input port of Mach-Zehnder interferometer (MZI) or Michelson interferometer (MI). For displacement or tilt measurement, a vacuum squeezing beam of a special transverse mode is coupled into an intense coherent beam, yielding a spatial-squeezed light whose transverse position or tilt angle noise is lower than that of a classical light beam. Based on the Faraday effect of polarization rotation, the magnetic field can be detected precisely. The precision can be increased further by using the polarization squeezing. The polarization squeezing can be generated by coupling two orthogonal polarized beams together, a coherent beam and a vacuum squeezed beam. Various polarization squeezing can be illustrated on the Poincaré sphere. Finally, in the clock synchronization based on the optical frequency comb, squeezed light can be used to enhance the time measurement precision. A theoretical scheme with multimode squeezing of supermode (a kind of mode describing the frequency mode of a pulse laser beam) is introduced. The squeezing has extensively been applied into the quantum precision measurements such as gravitational wave detection as well as biological measurement and will play a more important role in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.