Abstract

The structural glass transition is often regarded as purely a problem of the classical theory of liquids. The dynamics of electrons enters only implicitly, through the interactions between ionic cores or molecules. Likewise, zero-point effects tied to the atomic masses hardly affect the typical barriers for liquid rearrangements. Yet, glasses do exhibit many quantum phenomena—electronic, optical, and cryogenic peculiarities that seem to have universal characteristics. These anomalies of the glassy state are uncommon or strongly system dependent in crystals and amorphous solids not made by a quasi-equilibrium quench of a melt. These clearly quantum phenomena include midgap electronic states in amorphous semiconductors, the two-level systems, and the Boson peak. Here, we discuss how these quantum phenomena found in glasses are not merely consequences of any kind of disorder but have universal characteristics stemming from the structural dynamics inherent in the glass transition itself. The quantum dynamics ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.