Abstract
Work and efficiency of quantum Otto heat engines (QOHEs) can increase by using non-thermal baths or by inhomogeneous scaling of energy levels of the working substance. Given these points, at first, we construct the coherent thermal state for a trigonometric Pöschl–Teller (PT) potential. Then using a particle in this potential, which has unequally spaced energy levels, as a working substance, we investigate the work extraction and the efficiency of QOHEs that operates between cold and hot coherent thermal baths. The results show that changing the PT potential parameters in the adiabatic processes of QOHE, which causes an inhomogeneous shift in energy levels or/and make use of the hot coherent thermal bath, improve work extraction and efficiency of QOHE relative to the classical counterpart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.