Abstract

In the magnetic field range ΔH=8–60 kOe we observed and studied the anomalous oscillations in the magnetic field dependence of the resistance and magnetization of single crystals of n-HgCr2Se4. The absence of periodicity in 1/H in the ΔH=8–20 kOe range can be explained by the non-Fermi-liquid behavior of the electron subsystem and agrees with the theory of the de Haas-van Alphen in systems with intermediate valence. In stronger fields, ΔH=20–60 kOe, the amplitude of the fundamental harmonic decreases, with the number and amplitude of the higher-order harmonics increasing. As a result, noise is superimposed on the signal as magnetic field strength grows. The temperature dependence of the magnetization is the sum of the monotonic spin-wave contribution and the oscillating part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.