Abstract

We investigate the sensitivity of phase estimation in a Mach–Zehnder interferometer with photon-subtracted two-mode squeezed vacuum states. Our results show that, for given initial squeezing parameter, both symmetric and asymmetric photon subtractions can further improve the quantum Cramér–Rao bound (i.e., the ultimate phase sensitivity), especially for single-mode photon subtraction. On the other hand, the quantum Cramér–Rao bound can be reached by parity detection for symmetric photon-subtracted two-mode squeezed vacuum states at particular values of the phase shift, but it is not valid for asymmetric photon-subtracted two-mode squeezed vacuum states. In addition, compared with the two-mode squeezed vacuum state, the phase sensitivity via parity detection with asymmetric photon-subtracted two-mode squeezed vacuum states will be getting worse. Thus, parity detection may not always be the optimal detection scheme for nonclassical states of light when they are considered as the interferometer states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.