Abstract

We study numerically the low temperature behavior of a one-dimensional Bose gas trapped in an optical lattice. For a sufficient number of particles and weak repulsive interactions, we find a clear regime of temperatures where density fluctuations are negligible but phase fluctuations are considerable, i.e., a quasicondensate. In the weakly interacting limit, our results are in very good agreement with those obtained using a mean-field approximation. In coupling regimes beyond the validity of mean-field approaches, a phase-fluctuating condensate also appears, but the phase-correlation properties are qualitatively different. It is shown that quantum depletion plays an important role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.