Abstract
The mirror curves enable us to study B-model topological strings on noncompact toric Calabi-Yau threefolds. One of the method to obtain the mirror curves is to calculate the partition function of the topological string with a single brane. In this paper, we discuss two types of geometries: one is the chain of N ℙ1’s which we call “N-chain geometry,” the other is the chain of N ℙ1’s with a compactification which we call “periodic N-chain geometry.” We calculate the partition functions of the open topological strings on these geometries, and obtain the mirror curves and their quantization, which is characterized by (elliptic) hypergeometric difference operator. We also find a relation between the periodic chain and ∞-chain geometries, which implies a possible connection between 5d and 6d gauge theories in the larte N limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.