Abstract

The close spacing of electron energy levels at the Fermi surface of a metal allows for a ready exchange of energy between ionic and electronic subsystems. In molecular dynamics (MD) simulations of fast moving ions, the heat transfer to electrons is sometimes modelled as a frictional force that slows the ions. Quantum mechanical simulations lay bare these processes and reveal how best to characterise electronic friction and heating for direct incorporation into MD. In this paper, we discuss the limitations of the description of electronic damping as a viscous force, the validity of the two-temperature model, and how the non-adiabatic movement of electrons between bonds leads to directional stopping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.