Abstract

Pollutant reduction of internal combustion engines plays an essential role in automotive industry research and development. Exhaust-gas after-treatment using catalytic converters is of key importance to this goal. Storage catalytic converters based on barium oxide are a technology with promising potential to meet current and future emission standards for nitric oxides (NOx) abatement of lean-burning gasoline and Diesel engines. The aim of this work was to develop elementary reaction steps and determine kinetic parameters for the NOx storage reaction mechanism by means of density functional theory (DFT). DFT has proven a powerful tool in investigating microscopic aspects of heterogeneous reactions. Electronic structure calculations were performed for adsorption of different molecules on two surfaces relevant in automotive exhaust gas purification: barium oxide and platinum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.