Abstract
Evaluating the expectation of a quantum circuit is a classically difficult problem known as the quantum mean value problem (QMV). It is used to optimize the quantum approximate optimization algorithm and other variational quantum eigensolvers. We show that such an optimization can be improved substantially by using an approximation rather than the exact expectation. Together with efficient classical sampling algorithms, a quantum algorithm with minimal gate count can thus improve the efficiency of general integer-value problems, such as the shortest vector problem (SVP) investigated in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.