Abstract

ABSTRACT Graphene quantum dots (GQDs) have emerged as promising nanomaterials for electrochemical sensing due to their unique optical, electronic and catalytic properties. GQDs can be synthesised using top-down and bottom-up approaches, with green synthesis gaining popularity. The size, surface chemistry and doping of GQDs affect their electrochemical performance for sensing applications. GQDs enhance electron transfer and provide catalytic sites for signal amplification in electrochemical sensors for diverse analytes including neurotransmitters, biomarkers, metal ions and pollutants. However, challenges remain in improving GQD synthesis yield, property control, sensor stability and selectivity. This review summarises recent advances in GQD synthesis methods, strategies for property modulation, and applications in electrochemical sensors for biomedical, environmental and food analysis. The unique properties of GQDs that enable enhanced sensitivity and selectivity of sensors are discussed. Future research directions to address current challenges and realise the full potential of GQDs for next-generation sensor technology are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.